Abstract
Knowledge graph embeddings (KGE) are a powerful technique used in the biomedical domain to represent biological knowledge in a low dimensional space. However, a deep understanding of these methods is still missing, and, in particular, regarding their applications to prioritize genes associated with complex diseases with reduced genetic information. In this contribution, we built a knowledge graph (KG) by integrating heterogeneous biomedical data and generated KGE by implementing state-of-the-art methods, and two novel algorithms: Dlemb and BioKG2vec. Extensive testing of the embeddings with unsupervised clustering and supervised methods showed that KGE can be successfully implemented to predict genes associated with diseases and that our novel approaches outperform most existing algorithms in both scenarios. Our findings underscore the significance of data quality, preprocessing, and integration in achieving accurate predictions. Additionally, we applied KGE to predict genes linked to Intervertebral Disc Degeneration (IDD) and illustrated that functions pertinent to the disease are enriched within the prioritized gene set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.