Abstract

Accurate morbidity prediction can contribute greatly to the efficiency of medical services. Gastrointestinal infectious diseases are largely influenced by environmental pollutants, but predicting their morbidity based on pollution indicators is quite difficult because of the complex relationship between the pollutants and the infections. This study presents a deep neural network (DNN) model for estimating the morbidity of gastrointestinal infections based on 129 types of pollutants contained in soil and water. The DNN uses a deep Boltzmann machine (DBM) to model the unknown probabilistic relationship between the pollutants, and employs a Gaussian mixture model (GMM) to output the estimated morbidity. We also propose an evolutionary algorithm for efficiently training the DNN. Experiment on a data set from four counties in central China shows that the proposed model can estimate the morbidity much more accurately than traditional neural network and linear regression models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.