Abstract
PurposeWe predict the likelihood of a future motor vehicle collision (MVC) from visual function data, attitudes to driving, and past MVC history using the penalized support vector machine (pSVM) in subjects with primary open-angle glaucoma (POAG).MethodsPatients with POAG were screened prospectively for eligibility and 185 were analyzed in this study. Self-reported MVCs of all participants were recorded for 3 years from the baseline using a survey questionnaire every 12 months. A binocular integrated visual field (IVF) was calculated for each patient by merging a patient's monocular Humphrey Field Analyzer (HFA) visual fields (VFs). The IVF was divided into six regions, based on eccentricity and the right or left hemifield, and the average of the total deviation (TD) values in each of these six areas was calculated. Then, the future MVCs were predicted using various variables, including age, sex, 63 variables of 52 TD values, mean of the TD values, visual acuities (VAs), six sector average TDs with (predpenSVM_all) and without (predpenSVM_basic) the attitudes in driving, and also past MVC history, using the pSVM method, applying the leave-one-out cross validation.ResultsThe relationship between predpenSVM_basic and the future MVC approached significance (odds ratio = 1.15, [0.99–1.29], P = 0.064, logistic regression). A significant relationship was observed between predpenSVM_all and the future MVC (odds ratio = 1.21, P = 0.0015).ConclusionsIt was useful to predict future MVCs in patients with POAG using visual function metrics, patients' attitudes to driving, and past MVC history, using the pSVM.Translational RelevanceCareful consideration is needed when predicting future MVCs in POAG patients using visual function, and without driving attitude and MVC history.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.