Abstract

Despite the vast potential for insights and value present in Electronic Health Records (EHRs), it is challenging to fully leverage all the available information, particularly that contained in the free-text data written by clinicians describing the health status of patients. The utilization of Named Entity Recognition and Linking tools allows not only for the structuring of information contained within free-text data, but also for the integration with medical ontologies, which may prove highly beneficial for the analysis of patient medical histories with the aim of forecasting future medical outcomes, such as the diagnosis of a new disorder. In this paper, we propose MedTKG, a Temporal Knowledge Graph (TKG) framework that incorporates both the dynamic information of patient clinical histories and the static information of medical ontologies. The TKG is used to model a medical history as a series of snapshots at different points in time, effectively capturing the dynamic nature of the patient's health status, while a static graph is used to model the hierarchies of concepts extracted from domain ontologies. The proposed method aims to predict future disorders by identifying missing objects in the quadruple 〈s, r, ?, t 〉, where s and r denote the patient and the disorder relation type, respectively, and t is the timestamp of the query. The method is evaluated on clinical notes extracted from MIMIC-III and demonstrates the effectiveness of the TKG framework in predicting future disorders and of medical ontologies in improving its performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.