Abstract

The assessment of coastal land use/cover (LULC) change is one of the most precise techniques for detecting spatio-temporal change in the coastal system. This study, integrated Land Change Modeler, Habitat Quality Model, and Digital Shoreline Analysis System, to quantify spacio-temporal coastal LULC change and driving forces between 2000 and 2020. Combined the CA-Markov Model with Sea Level Affecting Marshes Model (SLAMM), merged local SLR data with future representative concentration pathway (RCP8.5) scenarios, and predicted future coastal LULC change and associated sea-level rise (SLR) impact on the coastal land use and habitat quality in short-, medium- and long-term. The study area had significant coastal LULC change between 2000 and 2020. The tidal flats, whose change was driven mainly by sea level, registered a total net gain of 57.93 km2. We also observed the significant loss of developed land whose change was influenced by tidal flat with a total loss of −75.58 km2. The tidal flat will experience a stunning net gain of 80.55 km2 between 2020 and 2060, making developed land the most negatively impacted land in the study area. The study led to the conclusion that the uncontrolled conversion of saltmarshes, mixed-forest, and mangroves into agriculture and infrastructures were the main factors affecting the coastal systems, including the faster coastal erosion and accretion observed during a 20-year period. The study also concluded that a low coastal elevation of −1 m and a slope of less than 2° have contributed to coastal change. Unprecedented changes will unavoidably pose a danger to coastal ecological services, socioeconomic growth, and food security. Timely efforts should be made by establishing sustainable mitigation methods to avoid the future impact.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call