Abstract

Clinically useful estimates of VO2max from treadmill tests (GXT) may be made using protocol-specific equations. In many cases, GXT may proceed more effectively if the clinician is free to adjust speed and grade independent of a specific protocol. We sought to determine whether VO2max could be predicted from the estimated steady-state VO2 of the terminal exercise stage. Seventy clinically stable individuals performed GXT with direct measurement of VO2. Exercise was incremented each minute to optimize clinical examination. Measured VO2max was compared to the estimated steady-state VO2 of the terminal stage based on ACSM equations. Equations for walking or running were used based on the patient's observed method of ambulation. The measured VO2max was always less than the ACSM estimate, with a regular relationship between measured and estimated VO2max. No handrail support: VO2max = 0.869.ACSM -0.07; R2 = 0.955, SEE = 4.8 ml.min-1.kg-1 (N = 30). With handrail support: VO2max = 0.694.ACSM + 3.33; R2 = 0.833, SEE = 4.4 ml.min-1.kg-1 (N = 40). The equations were cross-validated with 20 patients. The correlation between predicted and observed values was r = 0.98 and 0.97 without and with handrail support, respectively. The mean absolute prediction error (3.1 and 4.1 ml.min-1.kg-1) were similar to protocol-specific equations. We conclude that VO2max can be predicted independent of treadmill protocol with approximately the same error as protocol-specific equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.