Abstract
Freshwater production in seawater greenhouses (SWGH) is an important topic for decision-makers in arid lands. Since arid and semi-arid lands face water shortages, the use of SWGH helps farmers to supply water. This study proposed an integrated artificial neural network (ANN) model, namely, the ANN-antlion optimization algorithm (ANN-ALO), for predicting freshwater production in a seawater greenhouse. The width, length, and height of the evaporators and the roof transparency coefficient of the SWGH were used as the inputs of the models. The ability of ANN-ALO was benchmarked against the ANN-particle swarm optimization (ANN-PSO), ANN, and ANN-bat algorithms (ANN-BA). The novelties of the current study are the novel hybrid ANN models, the fuzzy reasoning concept for reducing the computational time, the comprehensive analysis of the uncertainty of the parameters and inputs, and the use of non-climate data. Comparing the models’ performances in the test phase demonstrated that the ANN-ALO model performed best, with a Root Mean Square Error (RMSE) value that was 18%, 33%, and 39% lower than that of the ANN-BA, ANN-PSO, and ANN models, respectively. For the ANN model, the percent bias (PBIAS) value in the training stage was 0.20, whereas for the ANN-BA, ANN-PSO, and ANN-ALO models, it was 0.14, 0.16, and 0.12, respectively. This study also indicated that the width of the seawater greenhouse was the most important parameter for predicting freshwater production.Furthermore, the results suggested that an evaporator height of 2 m resulted in the highest predicted freshwater production for all the widths except 200 m. The lowest freshwater production for different widths occurred at an evaporator height of 3 m. The generalized likelihood estimation for uncertainty analysis indicated that the uncertainty of the input parameters was lower than that of the model parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.