Abstract

Gallium nitride (GaN) piezoelectric semiconductor ceramics (PSCs) structures are often subjected to combined mechanical and electrical fields in engineering applications, leading to complex deformation and fracture challenges. This paper presents a fracture predictive model for PSCs under combined mechanical and electrical loading, developed using the boundary effect model rather than relying solely on data fitting. By introducing a current parameter that influences the characteristic crack length, the model effectively predicts the quasi-brittle fracture characteristics of GaN PSCs. Additionally, the model reveals how electric current affects the quasi-brittle fracture behavior of PSCs, providing crucial theoretical support for the reliable design of GaN intelligent semiconductor structures in complex environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.