Abstract

Composite helicopter rotor components are typically thick and often have areas with a tight radius of curvature, which make them especially prone to process-induced defects, including wrinkles and voids at ply interfaces. Such flaws cause high rejection rates in production of flight-critical components and structures. This work seeks to fill the gaps in understanding generation of the noted defects in contoured polymer–matrix composite laminates. In particular, understanding and modeling defect formation at the early stages of the manufacturing process might be the missing link to enable the development of practical engineering solutions allowing for better control of the manufacturing process of contoured composite parts. In this work, an approach based on a continuum description of the uncured prepreg material, including the initial bulk or void content, and finite element modeling (FEM) is used to simulate the consolidation process at the early stages of manufacturing of contoured laminates. The simulation predicts instabilities leading to formation of both wrinkles and voids at ply interfaces during laminate debulking or vacuum consolidation. Applicability of the method to consolidation in both closed-cavity and open-face tooling is also demonstrated. FEM results show good correlation with X-ray computed tomography data. This work also introduces a new simulation concept based on finite element and discrete modeling of voids at ply interfaces to improve the accuracy of predicting their evolution during the debulking operations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call