Abstract
BackgroundIntravenous fluid infusions are an important therapy for patients with circulatory shock. However, it is challenging to predict how patients’ cardiac stroke volume (SV) will respond, and thus identify how much fluids should be delivered, if any. Model-predicted SV time-profiles of response to fluid infusions could potentially be used to guide fluid therapy. MethodA clinically applicable model-based method predicts SV changes in response to fluid-infusions for a pig trial (N = 6). Validation/calibration SV, SVmea, is from an aortic flow probe. Model parameters are identified in 3 ways: fitting to SVmea from the entire infusion, SVflfit, from the first 200 ml, SVfl200, or from the first 100 ml, SVfl100. RMSE compares error of model-based SV time-profiles for each parameter identification method, and polar plot analysis assesses trending ability. Receiver-operating characteristic (ROC) analysis evaluates ability of model-predicted SVs, SVfl200 and SVfl100, to distinguish non-responsive and responsive infusions, using area-under the curve (AUC), and balanced accuracy as a measure of performance. ResultsRMSE for SVflFit, SVfl200, and SVfl100 was 1.8, 3.2, and 6.5 ml, respectively, and polar plot angular limit of agreement from was 11.6, 28.0, and 68.8°, respectively. For predicting responsive and non-responsive interventions SVfl200, and SVfl100 had ROC AUC of 0.64 and 0.69, respectively, and balanced accuracy was 0.75 in both cases. ConclusionsThe model-predicted SV time-profiles matched measured SV trends well for SVflFit, SVfl200, but not SVfl100. Thus, the model can fit the observed SV dynamics, and can deliver good SV prediction given a sufficient parameter identification period. This trial is limited by small numbers and provides proof-of-method, with further experimental and clinical investigation needed. Potentially, this method could deliver model-predicted SV time-profiles to guide fluid therapy decisions, or as part of a closed-loop fluid control system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.