Abstract

The two main goals of the analytical method described herein were to (1) use principal component analysis (PCA), hierarchical clustering (HCA) and K-nearest neighbors (KNN) to determine the feedstock source of blends of biodiesel and conventional diesel (feedstocks were two sources of soy, two strains of jatropha, and a local feedstock) and (2) use a partial least squares (PLS) model built specifically for each feedstock to determine the percent composition of the blend. The chemometric models were built using training sets composed of total ion current chromatograms from gas chromatography–quadrupole mass spectrometry (GC–qMS) using a polar column. The models were used to semi-automatically determine feedstock and blend percent composition of independent test set samples. The PLS predictions for jatropha blends had RMSEC=0.6, RMSECV=1.2, and RMSEP=1.4. The PLS predictions for soy blends had RMSEC=0.5, RMSECV=0.8, and RMSEP=1.2. The average relative error in predicted test set sample compositions was 5% for jatropha blends and 4% for soy blends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.