Abstract
Abstract Increasing instrumentation of the modem digital oilfield produces streams of data from sensors that monitor the functioning of different components in the field. This data should be converted to actionable information rapidly in order to respond to events as they happen or are predicted. The challenge is therefore to develop technologies that can process these large sensor datasets rapidly and with minimal manual supervision to ensure a data processing system that can scale with the increasing instrumentation. We consider as a use-case an oilfield with several Electrical Submersible Pumps (ESPs), each instrumented with sensors that continually measure electrical properties of the pump (the streams of sensor data), which are then relayed to a central location. In this paper, we demonstrate how a time-series analysis approach can be applied to failure detection and failure prediction from the streams of sensor data. The method involves identifying "shapelets" – short instances that are particularly distinct – in the streams of sensor data. The shapelets approach is particularly applicable to large oil and gas enterprise datasets because the algorithm does not need access to the entire historical data. This greatly reduces the amount of data that needs to be stored for data analysis. Moreover, unlike model-based approaches, shapelet-based analysis does not make any assumptions about the underlying nature of the data, making it practical for applications where a detailed physical model of the pump is not available. We validate our proposed method by analysis on a representative set of instrumented ESPs. We describe the preprocessing steps that were applied in our analysis. We report the results of experiments to study the effects of varying the data processing parameters on the accuracy of fault detection and prediction. These results indicate that shapelet-based approaches are promising for analysis of time-series data in the oil and gas industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.