Abstract
AbstractThis study focuses on the prediction of event‐based runoff coefficients (an important descriptor of flood events) for nested catchments up to an area of 50 km² in the Eastern Ore Mountains. The four main objectives of the study are (i) the prediction of runoff coefficients with the statistical method of generalized linear models, (ii) the comparison of the results of the linear models with estimates of a distributed conceptual model, (iii) the comparison of the dynamics of observed soil moisture and simulated saturation deficit of the hydrological model and (iv) the analysis of the relationship between runoff coefficient and observed and simulated wetness.Different predictor variables were selected to describe the runoff coefficient and were differentiated into variables describing the catchment's antecedent wetness and meteorological forcing. The best statistical model was estimated in a stepwise approach on the basis of hierarchical partitioning, an exhaustive search algorithm and model validation with jackknifing. We then applied the rainfall runoff model WaSiM ETH to predict the runoff processes for the two larger catchments. Locally measured small‐scale soil moisture (acquired at a scale of four to five magnitudes smaller than the catchment) was identified as one of the key predictor variables for the estimation of the runoff coefficient with the general linear model. It was found that the relationship betweenobserved and simulated (using WaSiM ETH) wetness is strongly hysteretic. The runoff coefficients derived from the rainfall runoff simulations systematically underestimate the observed values. Copyright © 2012 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.