Abstract

Relationships among spatial abilities, as assessed by a battery of psychometric tests and experimental tasks, and environmental learning, as assessed by a series of macrospatial tasks, were examined in two studies using confirmatory factor analysis with directional paths. The initial study indicated the utility of a five-factor model, one (general spatial ability) derived from psychometric tests, two (spatial-sequential memory and spatial perspective-taking latency) from experimental tasks, and two (topological knowledge and Euclidean direction knowledge) from measures of environmental learning. The best fitting path model further indicated that the spatial-sequential memory factor mediated the relationship between general spatial ability and topological knowledge, and that perspective-taking latency mediated the relationship between general spatial ability and Euclidean direction knowledge. The second study confirmed the five-factor path model using a different participant sample and environmental setting. The only failure to replicate involved the path between perspective-taking latency in the lab and Euclidean direction knowledge in the environment. Results indicate that the relationship between basic spatial abilities and environmental learning is significantly mediated by cognitive processes that can be assessed using laboratory tasks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call