Abstract
With self-supervised learning, both labeled and unlabeled data can be used for representation learning and model pretraining. This is particularly relevant when automating the selection of a patient's fertilized eggs (embryos) during a fertility treatment, in which only the embryos that were transferred to the female uterus may have labels of pregnancy. In this paper, we apply a self-supervised video alignment method known as temporal cycle-consistency (TCC) on 38176 time-lapse videos of developing embryos, of which 14550 were labeled. We show how TCC can be used to extract temporal similarities between embryo videos and use these for predicting pregnancy likelihood. Our temporal similarity method outperforms the time alignment measurement (TAM) with an area under the receiver operating characteristic (AUC) of 0.64 vs. 0.56. Compared to existing embryo evaluation models, it places in between a pure temporal and a spatio-temporal model that both require manual annotations. Furthermore, we use TCC for transfer learning in a semi-supervised fashion and show significant performance improvements compared to standard supervised learning, when only a small subset of the dataset is labeled. Specifically, two variants of transfer learning both achieve an AUC of 0.66 compared to 0.63 for supervised learning when 16% of the dataset is labeled.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.