Abstract
Abstract An accelerating rate calorimeter (ARC) is used to measure the thermal stability of de-intercalated Li 1+ x Mn 2− x O 4 in LiPF 6 EC:DEC (33:67) electrolyte. Self-heating is detected well after the 80°C onset of self-heating measured for lithium intercalated mesocarbon microbead (MCMB) electrodes in LiPF 6 EC:DEC (33:67) electrolyte. As a result, the initial self-heating measured in a practical carbon/Li 1+ x Mn 2− x O 4 lithium-ion cell is caused by reactions at the anode. In previous work, we have proposed a model for the reactions that cause self-heating in MCMB electrodes in electrolyte. By assuming that a cell self-heats only because reactions occur at the anode, the model can be used to predict the power generated by the amount of MCMB in practical cells with an inert cathode. The calculated chemically generated power can be combined with power loss measurements, due to the transfer of heat to the environment, to predict the short-circuit behaviour and the oven exposure behaviour for a cell containing an MCMB anode and an inert cathode. The results agree qualitatively with short-circuit and oven exposure results measured on NEC Moli energy 18650 cells containing an Li 1+ x Mn 2− x O 4 cathode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.