Abstract
Empirical relationships between effective conductivities in porous and composite materials and their geometric characteristics such as volume fraction , tortuosity τ and constrictivity β are established. For this purpose, 43 virtually generated 3D microstructures with varying geometric characteristics are considered. Effective conductivities are determined by numerical transport simulations. Using error‐minimization the following relationships have been established: and (simplified formula) with intrinsic conductivity σ0, geodesic tortuosity and relative prediction errors of 19% and 18%, respectively. We critically analyze the methodologies used to determine tortuosity and constrictivity. Comparing geometric tortuosity and geodesic tortuosity, our results indicate that geometric tortuosity has a tendency to overestimate the windedness of transport paths. Analyzing various definitions of constrictivity, we find that the established definition describes the effect of bottlenecks well. In summary, the established relationships are important for a purposeful optimization of materials with specific transport properties, such as porous electrodes in fuel cells and batteries. © 2016 American Institute of Chemical Engineers AIChE J, 62: 1834–1843, 2016
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.