Abstract

Proper prediction of material microstructure from known processing conditions and constituent material properties is a critical step to determine the bulk properties of the composite. This paper reports a meso-structure model of multi-axial multi-layer warp-knitted (MMWK) composites from an elastic–plastic material model considering the strain rate effect for the components of the MMWK composite. The representative unit cell (RUC) of fiber tow is created to obtain the elastic–plastic parameters of the fiber tow. The 3D meso-structure model of the MMWK composite is based on an idealized geometrical model according to the preform structure of the MMWK fabric. The model is used to investigate the effect of the volume fraction of the knitting yarn on the dynamic in-plane compressive properties. The results show that the fiber tow failure at large extent is mainly caused by the micro cracking of the matrix, and the effects of the knitting yarn on the mechanical properties of MMWK composite are very limited. Particularly, MMWK composites could be considered as laminates when the volume fraction of the knitting yarn is low, such as below 1.5%. Experiments were also conducted to validate the results from the simplified meso-structure model of the MMWK composite. The material is found to be strain rate sensitive, and the experimental and predicted results agree well with respect to the compressive strength and modulus of the composite. This confirms that the meso-structure MMWK composite model proposed is capable of capturing the essential features for the response of the composite under different strain rate conditions at the meso-level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call