Abstract

We investigate how the typical dust extinction of H-alpha luminosity from a star-forming galaxy depends upon star formation rate (SFR), metallicity and stellar mass independently, using a sample of ~90,000 galaxies from Data Release 7 of the Sloan Digital Sky Survey (SDSS). We measure extinctions directly from the Balmer decrement of each source, and while higher values of extinction are associated with an increase in any of the three parameters, we demonstrate that the fundamental property that governs extinction is stellar mass. After this mass-dependent relationship is removed, there is very little systematic dependence of the residual extinctions with either SFR or metallicity, and no significant improvement is obtained from a more general parameterisation. In contrast to this, if either a SFR-dependent or metallicity-dependent extinction relationship is applied, the residual extinctions show significant trends that correlate with the other parameters. Using the SDSS data, we present a relationship to predict the median dust extinction of a sample of galaxies from its stellar mass, which has a scatter of ~0.3 mag. The relationship was calibrated for H-alpha emission, but can be more generally applied to radiation emitted at other wavelengths. These results have important applications for studies of high-redshift galaxies, where individual extinction measurements are hard to obtain but stellar mass estimates can be relatively easily estimated from long-wavelength data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.