Abstract

Using empirical models to predict voluntary dry matter intake (VDMI) of cattle across production systems in the (Sub-)Tropics often yields VDMI estimates with low adequacy (i.e., accuracy and precision). Thus, we investigated whether semimechanistic conceptual mathematical models (CMM) developed for cattle in temperate areas could be adopted and adjusted to adequately predict VDMI of stall-fed cattle in the (Sub-)Tropics. The CMM of Conrad et al. (1964) (C1) and Mertens (1987) (M1) were identified and adopted for their simplicity in reflecting physicophysiological VDMI regulation. Both CMM use 2 equations that estimate the physiologically and physically regulated VDMI and retain the lower VDMI prediction as actual VDMI. Furthermore, C1 was modified by increasing the daily average fecal dry matter output from 0.0107 to 0.0116 kg/kg body weight, yielding the modified model C2. For M1, the daily neutral detergent fiber intake capacity was increased from 0.012 to 0.0135 kg/kg body weight and the daily metabolizable energy requirements for maintenance from 0.419 to 0.631 MJ/kg0.75 body weight, whereas the metabolizable energy requirements for gain was reduced from 32.5 to 24.3 MJ/kg body weight gain, yielding the modified model M2. Last, also the mean of the physically and physiologically regulated VDMI rather than the lower of both estimates was retained as actual VDMI to generate the models C3 (from C1), C4 (from C2), M3 (from M1), and M4 (from M2). The 8 CMM were then evaluated using a data set summarizing results from 52 studies conducted under (sub)tropical conditions. The mean bias, root mean square error of prediction (RMSEP) and concordance correlation coefficient (CCC) were used to evaluate adequacy and robustness of all CMM. The M4, C2, and C1 were the most adequate CMM [i.e., lowest mean biases (0.07, -0.22, and 0.14 kg/animal and day, respectively), RMSEP (1.62, 1.93, and 2.0 kg/animal and day, respectively), and CCC (0.91, 0.86, and 0.85, respectively)] and robust of the 8 CMM. Hence, CMM can adequately predict VDMI across diverse stall-fed cattle systems in the (Sub-)Tropics. Adjusting CMM to reflect the differences in feed quality and animal physiology under typical husbandry conditions in the (Sub-)Tropics and those in temperate areas improves the adequacy of their VDMI predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.