Abstract

Drug-disease associations provide important information for drug discovery and drug repositioning. Drug-disease associations can induce different effects, and the therapeutic effect attracts wide spread interest. Therefore, developing drug-disease association prediction methods is an important task, and differentiating therapeutic associations from other associations is also very important. In this paper, we formulate the known drug-disease associations as a bipartite network, and then present a novel representation for drugs and diseases based on the bipartite network and linear neighborhood similarity. Thus, we propose the network topological similarity-based inference method (NTSIM) to predict unobserved drug-disease associations. Further, we extend the work to the association classification, and propose the network topological similarity-based classification method (NTSIM-C) to differentiate therapeutic associations from others. Compared with existing drug-disease association prediction methods, NTSIM can produce superior performances in predicting drug-disease associations, and NTSIM-C can accurately classify drug-disease associations. Further, we analyze the capability of proposed methods by using several case studies. The studies show the usefulness of NTSIM and NTSIM-C in the real applications. In conclusion, NTSIM and NTSIM-C are promising for predicting drug-disease associations and their therapeutic functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.