Abstract

Large-scale cancer drug sensitivity data have become available for a collection of cancer cell lines, but only limited drug response data from patients are available. Bridging the gap in pharmacogenomics knowledge between invitro and invivo datasets remains challenging. In this study, we trained a deep learning model, Scaden-CA, for deconvoluting tumor data into proportions of cancer-type-specific cell lines. Then, we developed a drug response prediction method using the deconvoluted proportions and the drug sensitivity data from cell lines. The Scaden-CA model showed excellent performance in terms of concordance correlation coefficients (>0.9 for model testing) and the correctly deconvoluted rate (>70% across most cancers) for model validation using Cancer Cell Line Encyclopedia (CCLE) bulk RNA data. We applied the model to tumors in The Cancer Genome Atlas (TCGA) dataset and examined associations between predicted cell viability and mutation status or gene expression levels to understand underlying mechanisms of potential value for drug repurposing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.