Abstract
Student attrition represents one of the greatest challenges facing U.S. postsecondary institutions. Approximately 40 percent of students seeking a bachelor’s degree do not graduate within 6 years; among nontraditional students, who make up half of the undergraduate population, dropout rates are even higher. In this study, we developed a machine learning classifier using the XGBoost model and data from the National Center for Education Statistics (NCES) Beginning Postsecondary Students (BPS) Longitudinal Study: 2012/14 to predict nontraditional student dropout. In comparison with baseline models, the XGBoost model and logistic regression model with features identified by the XGBoost model displayed superior performance in predicting dropout. The predictive ability of the model and the features it identified as being most important in predicting nontraditional student dropout can inform discussion among educators seeking ways to identify and support at-risk students early in their postsecondary careers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of College Student Retention: Research, Theory & Practice
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.