Abstract
Accurate prediction of the dissolved oxygen level (DOL) is important for enhancing environmental conditions and facilitating water resource management. However, the irregularity and volatility inherent in DOL pose significant challenges to achieving precise forecasts. A single model usually suffers from low prediction accuracy, narrow application range, and difficult data acquisition. This study proposes a new weighted model that avoids these problems, which could increase the prediction accuracy of the DOL. The weighting constructs of the proposed model (PWM) included eight neural networks and one statistical method and utilized Young's double-slit experimental optimizer as an intelligent weighting tool. To evaluate the effectiveness of PWM, simulations were conducted using real-world data acquired from the Tualatin River Basin in Oregon, United States. Empirical findings unequivocally demonstrated that PWM outperforms both the statistical model and the individual machine learning models, and has the lowest mean absolute percentage error among all the weighted models. Based on two real datasets, the PWM can averagely obtain the mean absolute percentage errors of 1.0216%, 1.4630%, and 1.7087% for one-, two-, and three-step predictions, respectively. This study shows that the PWM can effectively integrate the distinctive merits of deep learning methods, neural networks, and statistical models, thereby increasing forecasting accuracy and providing indispensable technical support for the sustainable development of regional water environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.