Abstract

IntroductionThe objective of this study was to use a prospective error analysis method to examine the process of dispensing medication in community pharmacy settings and identify remedial solutions to avoid potential errors, categorising them as strong, intermediate, or weak based on an established patient safety action hierarchy tool.MethodFocus group discussions and non-participant observations were undertaken to develop a Hierarchical Task Analysis (HTA), and subsequent focus group discussions applied the Systematic Human Error Reduction and Prediction Approach (SHERPA) focusing on the task of dispensing medication in community pharmacies. Remedial measures identified through the SHERPA analysis were then categorised as strong, intermediate, or weak based on the Veteran Affairs National Centre for Patient Safety action hierarchy. Non-participant observations were conducted at 3 pharmacies, totalling 12 hours, based in England. Additionally, 7 community pharmacists, with experience ranging from 8 to 38 years, participated in a total of 4 focus groups, each lasting between 57 to 85 minutes, with one focus group discussing the HTA and three applying SHERPA. A HTA was produced consisting of 10 sub-tasks, with further levels of sub-tasks within each of them.ResultsOverall, 88 potential errors were identified, with a total of 35 remedial solutions proposed to avoid these errors in practice. Sixteen (46%) of these remedial measures were categorised as weak, 14 (40%) as intermediate and 5 (14%) as strong according to the Veteran Affairs National Centre for Patient Safety action hierarchy. Sub-tasks with the most potential errors were identified, which included ‘producing medication labels’ and ‘final checking of medicines’. The most common type of error determined from the SHERPA analysis related to omitting a check during the dispensing process which accounted for 19 potential errors.DiscussionThis work applies both HTA and SHERPA for the first time to the task of dispensing medication in community pharmacies, detailing the complexity of the task and highlighting potential errors and remedial measures specific to this task. Future research should examine the effectiveness of the proposed remedial solutions to improve patient safety.

Highlights

  • The objective of this study was to use a prospective error analysis method to examine the process of dispensing medication in community pharmacy settings and identify remedial solutions to avoid potential errors, categorising them as strong, intermediate, or weak based on an established patient safety action hierarchy tool

  • The most common type of error determined from the Systematic Human Error Reduction and Prediction Approach (SHERPA) analysis related to omitting a check during the dispensing process which accounted for 19 potential errors

  • The objective of this study was to use a prospective error analysis method to examine the process of dispensing medication in a community pharmacy setting and identify remedial solutions to avoid potential errors, categorising them as strong, intermediate, or weak based on the aforementioned patient safety action hierarchy

Read more

Summary

Introduction

The objective of this study was to use a prospective error analysis method to examine the process of dispensing medication in community pharmacy settings and identify remedial solutions to avoid potential errors, categorising them as strong, intermediate, or weak based on an established patient safety action hierarchy tool. The second type of errors that community pharmacists must identify and rectify are dispensing errors, where medicines are dispensed that are not identical to the orders of the prescriber, or incorrect instructions are printed on the labels attached to the medicines. These types of errors can be missed by the pharmacist, or pharmacy support staff, during accuracy checks of dispensed medicines. In order to complement the studies available retrospectively analysing incidents within community pharmacy, various prospective risk analysis methods should be applied to the complex task of dispensing medicines [10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call