Abstract

This paper examines video games, a form of digital innovation, and seeks to predict a successful game based on the composition of game development team members. Team composition is measured with observable features generated from a graph network based on development team information derived from individual team member work on previous games. Features include network features, such as team member closeness, success percentile, and failure percentile, and non-network features, such as the number of games published prior by the studio. We propose a novel framework using these features to predict the chance of success for new games with an accuracy higher than 92%. Further, we investigate important features for prediction and provide model interpretability for practical implementations. We then build a decision support tool that allows video game producers, and associated stakeholders such as investors, to understand how the predictive model decides, predicts, and performs its recommendations. The findings have implications for those seeking to proactively impact digital product performance through graph network-generated features of team composition, where features are directly observable, as opposed to features that are more challenging to observe, such as personalities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.