Abstract
This study aimed to test a predictive model for depression in older adults in the community after the COVID-19 pandemic and identify influencing factors using the International Classification of Functioning, Disability, and Health (ICF). The subjects of this study were 9920 older adults in South Korean local communities. The analysis results of path analysis and bootstrapping analysis revealed that subjective health status, instrumental activities of daily living (IADL), number of chronic diseases, social support satisfaction, household economic level, informal support, and participation in social groups were factors directly influencing depression, while formal support, age, gender, education level, employment status, and participation in social groups were factors indirectly affecting it. It will be needed to prepare measures to prevent depression in older adults during an infectious disease pandemic, such as the COVID-19 pandemic, based on the results of this study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.