Abstract
Accurate daily solar radiation (Rs) data is crucial for the growth and development of crops, but its direct observation is relatively scarce in most regions around the world. Therefore, accurately estimating daily Rs is of great significance. Regarding the above practical requirement, this study developed a novel hybrid deep learning model (MEA-DBN-LSTM), which combined the Long Short-Term Memory model (LSTM), Deep Belief Network (DBN), and Mind Evolutionary Algorithm (MEA), to estimate the Rs across four different climate regions of China using five easily accessible meteorological input combination (sunshine-based, temperature-based and three complex-based). The results showed that MEA-DBN-LSTM was proved to be the most recommended Rs estimated model across four different climate regions of China, and the corresponding median R2, NSE, RMSE, MAE, and MAPE values ranged 0.805–0.999, 0.656–0.954, 1.069–4.289 MJ m−2 d–1, 0.889–3.532 MJ m−2 d–1, and 0.055–0.296 respectively. Correspondingly, compared to the empirical Rs model, the improvement values of MEA-DBN-LSTM were 12.33–52.13 % for R2, 14.80–69.38 % for NSE, 33.75–69.77 % for RMSE, 36.03–62.70 % for MAE, and 42.40–66.67 % for MAPE, respectively. Moreover, the MEA-DBN-LSTM exhibits improvements in R2, NSE, RMSE, MAE, and MAPE, ranging 1.40–13.50 %, 1.27–24.79 %, 1.81–61.18 %, 1.90–61.30 %, and 2.31–57.55 %, respectively, compared to other forms of LSTM-type models. Specifically, this study found the DBN modules significantly improved the complex-based single LSTM model, but without impact on sunshine-based and temperature-based single LSTM models. Regarding the MEA modules, it was effective in the hyperparameter optimization compared to DBN-LSTM. Furthermore, significant accuracy discrepancies exist among Rs models using different input combinations across four different climate regions, and the complex-based was generally superior to other input combinations. Overall, our findings can provide accurate daily Rs across four different climate regions of China using easily accessible meteorological data, which is of great significance for crop water consumption estimation, agricultural water resources management, crop growth conditions optimization, and sustainable agricultural development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.