Abstract
Predicting customer purchase behavior is an interesting and challenging task. In the e-commerce context, meeting this challenge requires confronting many problems not observed in the traditional business context. Recommender system technology has been widely adopted by e-commerce websites. However, a traditional recommendation algorithm cannot perform well the predictive task in this context. This study intends to build a predictive framework for customer purchase behavior in the e-commerce context. This framework, known as CustOmer purchase pREdiction modeL (COREL), may be understood as a two-stage process. First, associations among products are investigated and exploited to predicate customer's motivations, i.e., to build a candidate product collection. Next, customer preferences for product features are learned and subsequently used to identify the candidate products most likely to be purchased. This study investigates three categories of product features and develops methods to detect customer preferences for each of these three categories. When a product purchased by a particular consumer is submitted to COREL, the program can return the top n products most likely to be purchased by that customer in the future. Experiments conducted on a real dataset show that customer preference for particular product features plays a key role in decision-making and that COREL greatly outperforms the baseline methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.