Abstract
AbstractMethods for evaluating the creep toughness parameter, are reviewed and data are determined for a ferritic P22 steel from creep crack growth tests on compact tension, C(T), specimens of homogenous parent material (PM) and heterogeneous specimen weldments at 565 °C and compared to similar tests on austenitic type 316H stainless steel at 550 °C. Appropriate relations describing the time dependency of are determined accounting for data scatter. Considerable differences are observed in the form of the data and the time‐dependent failure assessment diagrams (TDFADs) for both the 316H and P22 steel. The TDFAD for P22 shows a strong time dependency, but is insensitive to time for 316H. Creep crack initiation (CCI) time predictions are obtained using the TDFAD approach and compared to experimental results from C(T) specimens and feature components. The TDFAD based on parent material properties can be used to obtain conservative predictions of CCI on weldments. Conservative predictions are almost always obtained when lower bound values are employed. Long‐term test are generally more relevant to industrial component lifetimes. The different trends between long‐ and short‐term CCI time and growth data indicate that additional long‐term test are required to further validate the procedure to predict the lifetimes of high temperature components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Fatigue & Fracture of Engineering Materials & Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.