Abstract
The objectives of the study reported in this paper are: (1) to evaluate the adequacy of two data mining techniques, decision tree and neural network in analysing consumer preference for a fast-food franchise and (2) to examine the sufficiency of the criteria selected in understanding this preference. We build decision tree and neural network models to fit data samples collected from 800 respondents in Taiwan to understand the factors that determine their brand preference. Classification rules are generated from these models to differentiate between consumers who prefer the brand and those who do not. The generated rules show that while both decision tree and neural network models can achieve predictive accuracy of more than 80% on the training data samples and more that 70% on the cross-validation data samples, the neural network models compare very favourably to a decision tree model in rule complexity and the numbers of relevant input attributes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.