Abstract

This study mapped personality based on the newly proposed extraction method from consumers’ textual data and revealed the relevance (attention) and polarity (affection) of words associated with a specific personality trait. Furthermore, we illustrate how unique words are used to predict a consumer’s behavior associated with certain personality traits. In this study, we employed the scales of the Kaggle MBTI Personality dataset to examine the methodology’s effectiveness, extract the personality traits from the textual data into features, and map them into the traits/dimensions of the existing scale. Based on the results obtained in this study, we assert that using the TF-IDF algorithm is a good way to generate a custom dictionary. Furthermore, sentiment scoring with an AI-empowered machine learning algorithm provides useful data to filter and validate more coherent words to understand and, thus, communicate a particular aspect of personality. Finally, we proposed that four situations involving the interaction between attention (frequency) and affection (sentiment) allow us to better understand the consumer and how to use the feature words in terms of the interaction between attention (TF-IDF score) and affection (sentiment score).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.