Abstract

Polymer blends can yield superior materials by merging the unique properties of their components. However, these mixtures often phase separate, leading to brittleness. While compatibilizers can toughen these blends, their vast design space makes optimization difficult. Here, we develop a model to predict the toughness of compatibilized glassy polymer mixtures. This theory reveals that compatibilizers increase blend toughness by creating molecular bridges that stitch the interface together. We validate this theory by directly comparing its predictions to extensive molecular dynamics simulations in which we vary polymer incompatibility, chain stiffness, compatibilizer areal density, and blockiness of copolymer compatibilizers. We then parameterize the model using self-consistent field theory and confirm its ability to make predictions for practical applications through comparison with simulations and experiments. These results suggest that the theory can optimize compatibilizer design for industrial glassy polymer blends in silico while providing microscopic insight, allowing for the development of next-generation mixtures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.