Abstract

The global demand for energy has been steadily increasing due to population growth, urbanization, and industrialization. Numerous researchers worldwide are striving to create precise forecasting models for predicting energy consumption to manage supply and demand effectively. In this research, a time-series forecasting model based on multivariate multilayered long short-term memory (LSTM) is proposed for forecasting energy consumption and tested using data obtained from commercial buildings in Melbourne, Australia: the Advanced Technologies Center, Advanced Manufacturing and Design Center, and Knox Innovation, Opportunity, and Sustainability Center buildings. This research specifically identifies the best forecasting method for subtropical conditions and evaluates its performance by comparing it with the most commonly used methods at present, including LSTM, bidirectional LSTM, and linear regression. The proposed multivariate, multilayered LSTM model was assessed by comparing mean average error (MAE), root-mean-square error (RMSE), and mean absolute percentage error (MAPE) values with and without labeled time. Results indicate that the proposed model exhibits optimal performance with improved precision and accuracy. Specifically, the proposed LSTM model achieved a decrease in MAE of 30%, RMSE of 25%, and MAPE of 20% compared with the LSTM method. Moreover, it outperformed the bidirectional LSTM method with a reduction in MAE of 10%, RMSE of 20%, and MAPE of 18%. Furthermore, the proposed model surpassed linear regression with a decrease in MAE by 2%, RMSE by 7%, and MAPE by 10%.These findings highlight the significant performance increase achieved by the proposed multivariate multilayered LSTM model in energy consumption forecasting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.