Abstract

Code smell detection is essential to improve software quality, enhancing software maintainability, and decrease the risk of faults and failures in the software system. In this paper, we proposed a code smell prediction approach based on machine learning techniques and software metrics. The local interpretable model-agnostic explanations (LIME) algorithm was further used to explain the machine learning model’s predictions and interpretability. The datasets obtained from Fontana et al. were reformed and used to build binary-label and multi-label datasets. The results of 10-fold cross-validation show that the performance of tree-based algorithms (mainly Random Forest) is higher compared with kernel-based and network-based algorithms. The genetic algorithm based feature selection methods enhance the accuracy of these machine learning algorithms by selecting the most relevant features in each dataset. Moreover, the parameter optimization techniques based on the grid search algorithm significantly enhance the accuracy of all these algorithms. Finally, machine learning techniques have high potential in predicting the code smells, which contribute to detect these smells and enhance the software’s quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.