Abstract

Accurate and reliable nearshore wave predictions are highly valuable for a range of marine activities, including coastal engineering and maritime transport. However, in nearshore locations, predicting wave properties is challenging due to complex shallow water processes, requiring local wave models. This article develops an alternative data-driven framework to predict wave parameters (e.g. significant wave height) through the extension of wave buoy datasets using a trained Gaussian process regression (GPR – a supervised machine learning method). We present an easy-to-implement workflow, where the extensive range of input parameters (from ECMWF’s (1) ERA5 reanalysis and (2) IFS forecast global wave model, ≈50km resolution) drives the development of GPR models. At five contrasting locations around the United Kingdom’s coastline, the GPR models produce wave predictions (forecast and hindcast) with low bias scores and strong correlations with observations. When compared to the global (ERA5 reanalysis) and a benchmark shelf-scale (Atlantic-European North West Shelf reanalysis; AENWS, 1.5−3.0km resolution) model, the GPR hindcasts reduced significant wave height (Hs) root-mean-squared error (RMSE) from 0.46 m (ERA5) and 0.21 m (AENWS) to 0.16 m (GPR). For the average zero-crossing wave period (Tz) RMSE reduced from 1.46 s (ERA5) and 1.15 s (AENWS) to 0.58 s (GPR). Because our approach uses publicly available global data, it can be implemented at any historic or active buoy location. We provide proof of concept for an online forecast and hindcast tool which has the potential to improve accessibility to coastal wave predictions for many marine stakeholders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.