Abstract
BackgroundCircular RNAs (circRNAs) play essential roles in cancer development and therapy resistance. Many studies have shown that circRNA is closely related to human health. The expression of circRNAs also affects the sensitivity of cells to drugs, thereby significantly affecting the efficacy of drugs. However, traditional biological experiments are time-consuming and expensive to validate drug-related circRNAs. Therefore, it is an important and urgent task to develop an effective computational method for predicting unknown circRNA-drug associations.ResultsIn this work, we propose a computational framework (GATECDA) based on graph attention auto-encoder to predict circRNA-drug sensitivity associations. In GATECDA, we leverage multiple databases, containing the sequences of host genes of circRNAs, the structure of drugs, and circRNA-drug sensitivity associations. Based on the data, GATECDA employs Graph attention auto-encoder (GATE) to extract the low-dimensional representation of circRNA/drug, effectively retaining critical information in sparse high-dimensional features and realizing the effective fusion of nodes’ neighborhood information. Experimental results indicate that GATECDA achieves an average AUC of 89.18% under 10-fold cross-validation. Case studies further show the excellent performance of GATECDA.ConclusionsMany experimental results and case studies show that our proposed GATECDA method can effectively predict the circRNA-drug sensitivity associations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.