Abstract

The adsorption rate of chromium (VI) on commercial activated carbon during the treatment of the flocculation effluent of liquid-phase oil-based drill-cuttings has been investigated in terms of contact time and initial chromium (VI) ion concentration. Homogenizing 1 g of the activated carbon with 100 ml of the flocculation effluent of known initial concentrations (1.25 → 6.25 mg/l, in turn) in a flask, at a constant stirring speed of 80 rpm at 25 o C for 180 min, the pseudo-second-order kinetics was observed to be more suitable in predicting the adsorption rate of chromium (VI) ion in the treatment process as experimental data fitted the model relatively better than the pseudo-first-order kinetics with R 2 = 0.9999. Adsorption took place in two steps: an initial high rate step before reaching a plateau at equilibrium in the low rate step. Equilibrium was attained in a contact time of 60 min and the equilibrium adsorption capacity of the activated carbon was 78.6%. Equilibrium adsorption data fitted the Freundlich isotherm well with R 2 = 0.981. The intensity of adsorption was 1.32, which indicates a strongly favourable adsorption. This showed that a large proportion of the chromium (VI) ion was adsorbed at low concentration of the adsorbate in solution. Key words : Carbon adsorption, kinetic models, drill cuttings, chromium removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.