Abstract

Analyzing chemicals and their effects on the environment from a life cycle viewpoint can produce a thorough analysis that takes end-of-life (EoL) activities into account. Chemical risk assessment, predicting environmental discharges, and finding EoL paths and exposure scenarios all depend on chemical flow data availability. However, it is challenging to gain access to such data and systematically determine EoL activities and potential chemical exposure scenarios. As a result, this work creates quantitative structure-transfer relationship (QSTR) models for aiding environmental managment decision-making based on chemical structure-based machine learning (ML) models to predict potential industrial EoL activities, chemical flow allocation, environmental releases, and exposure routes. Further multi-label classification methods may improve the predictability of QSTR models according to the ML experiment tracking. The developed QSTR models will assist stakeholders in predicting and comprehending potential EoL management activities and recycling loops, enabling environmental decision-making and EoL exposure assessment for new or existing chemicals in the global marketplace.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.