Abstract

BackgroundCardiovascular disease (CVD) is the leading cause of death in the United States (US). Better cardiovascular health (CVH) is associated with CVD prevention. Predicting future CVH levels may help providers better manage patients’ CVH. We hypothesized that CVH measures can be predicted based on previous measurements from longitudinal electronic health record (EHR) data.MethodsThe Guideline Advantage (TGA) dataset was used and contained EHR data from 70 outpatient clinics across the United States (US). We studied predictions of 5 CVH submetrics: smoking status (SMK), body mass index (BMI), blood pressure (BP), hemoglobin A1c (A1C), and low-density lipoprotein (LDL). We applied embedding techniques and long short-term memory (LSTM) networks – to predict future CVH category levels from all the previous CVH measurements of 216,445 unique patients for each CVH submetric.ResultsThe LSTM model performance was evaluated by the area under the receiver operator curve (AUROC): the micro-average AUROC was 0.99 for SMK prediction; 0.97 for BMI; 0.84 for BP; 0.91 for A1C; and 0.93 for LDL prediction. Model performance was not improved by using all 5 submetric measures compared with using single submetric measures.ConclusionsWe suggest that future CVH levels can be predicted using previous CVH measurements for each submetric, which has implications for population cardiovascular health management. Predicting patients’ future CVH levels might directly increase patient CVH health and thus quality of life, while also indirectly decreasing the burden and cost for clinical health system caused by CVD and cancers.

Highlights

  • Cardiovascular disease (CVD) is the leading cause of death in the United States (US)

  • We studied a subpopulation of patients who had at least two measures for each Cardiovascular health (CVH) submetric to predict the CVH submetric measure categories using data from a single submetric data versus all 5 submetrics employing multi-label and multiclass classification techniques

  • We found that long short-term memory (LSTM) models can be effective at accurately predicting CVH measure categories in each submetric from the time-series CVH measures

Read more

Summary

Introduction

Cardiovascular disease (CVD) is the leading cause of death in the United States (US). Better cardiovascular health (CVH) is associated with CVD prevention. Predicting future CVH levels may help providers better manage patients’ CVH. Cardiovascular disease (CVD) is the leading cause of mortality for both men and women in the United States (US), and accounts for almost 1 in every 4 deaths (https://www.medicalnewstoday.com/articles/28292​9.php). Cardiovascular health (CVH) metrics, defined by the American Heart Association (AHA), have important implications for CVD prevention [1,2,3,4,5,6]. Individuals with better CVH metrics have lower risk of CVD death and prevention efforts should focus on maintaining or improving CVH across the lifespan (https://www.medicalnewstoday.com/articles/32419​5.php). Predicting future CVH levels may be associated with better management of CVD.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call