Abstract

Carbon monoxide (CO) poisoning could cause significant cardiac injury. This study aimed to evaluate patients with CO poisoning by using speckle tracking echocardiography (STE), a potentially more sensitive technique, to identify left systolic ventricular dysfunction for the first time in the literature. Seventy-two patients who were exposed to CO poisoning were studied. Blood collection and echocardiography were performed at admission and after patients' discharge on days 10-15 (mean 12days). Global longitudinal strain (GLS) and global circumferential strain (GCS) were calculated using STE. In order to find the normal strain levels and to compare it to the patient with CO poisoning, 35 healthy subjects were included in the study. Left ventricular ejection fraction was analyzed according to Simpson's method. Patients were divided into two groups based on their LVEF values. LVEF<55%, Group 1 (n=24); LVEF≥55%, Group 2 (n=48). The reduction in Group 1 strain levels decreased in correlation with LVEF (p<0.001) while in Group 2, there were no significant changes in LVEF but strain levels were significantly reduced (p=0.091; p<0.001). Compared with the control group patients, admission GLS and GLC values of CO-poisoned patients were significantly low both in Group 1 and 2. On the contrary, no significant difference was observed when compared with follow-up GLS value. For prediction of CO cardiotoxicity, the cutoff value of GLS was ≥ -19.1 with a sensitivity of 70.3% and a specificity of 100% [(AUC) 0.840, 95% (CI) 0.735-0.916; p<0.001] in the ROC curve analyses. GLS was found as independent predictors of cardiotoxicity. Our study demonstrates the potential of using systolic strain values obtained using 2D-STE in determining cardiotoxicity due to CO poisoning. Speckle tracking echocardiography has the potential of demonstrating subtle LV systolic dysfunction even in CO poisoning patients with preserved EF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.