Abstract
This study aimed to predict Blackbelly sheep carcass tissue composition using ultrasound measurements and machine learning models. The models evaluated were decision trees, random forests, support vector machines, and multi-layer perceptrons and were used to predict the total carcass bone (TCB), total carcass fat (TCF), and total carcass muscle (TCM). The best model for predicting the three parameters, TCB, TCF, and TCM was random forests, with mean squared error (MSE) of 0.31, 0.33, and 0.53; mean absolute error (MAE) of 0.26, 0.29, and 0.53; and the coefficient of determination (R2) of 0.67, 0.69, and 0.76, respectively. The results showed that machine learning methods from in vivo ultrasound measurements can be used as determinants of carcass tissue composition, resulting in reliable results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.