Abstract

Neural networks (NN) are a relatively new option to model growth in animal production systems. One self-organizing submodel of artificial NN is the group method of data handling (GMDH)-type NN. The use of such self-organizing networks has led to successful application of the GMDH algorithm over a broad range of areas in engineering, science, and economics. The present study aimed to apply the GMDH-type NN to predict caloric efficiency (CE, g of gain/kcal of caloric intake) and feed efficiency (FE, kg of gain/kg of feed intake) in tom and hen turkeys fed diets containing different energy and amino acid levels. Involved effective input parameters in prediction of CE and FE were age, dietary ME, CP, Met, and Lys. Quantitative examination of the goodness of fit for the predictive models was made using R2 and error measurement indices commonly used to evaluate forecasting models. Statistical performance of the developed GMDH-type NN models revealed close agreement between observed and predicted values of CE and FE. In conclusion, using such powerful models can enhance our ability to predict economic traits, make precise prediction of nutrition requirements, and achieve optimal performance in poultry production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call