Abstract

A methodology termed membrane-interaction QSAR (MI-QSAR) analysis has been developed in order to predict the behavior of organic compounds interacting with the phospholipid-rich regions of biological membranes. One important application of MI-QSAR analysis is to estimate ADME properties including the transport of organic solutes through biological membranes as a computational approach to forecasting drug intestinal absorption. A training set of 30 structurally diverse drugs, whose permeability coefficients across the cellular membranes of Caco-2 cells were measured, was used to construct significant MI-QSAR models of Caco-2 cell permeation. Cellular permeation is found to depend primarily upon aqueous solvation free energy (solubility) of the drug, the extent of drug interaction with a model phospholipid (DMPC) monolayer, and the conformational flexibility of the solute within the model membrane. A test set of eight drugs was used to evaluate the predictivity of the MI-QSAR models. The permeation coefficients of the test set compounds were predicted with the same accuracy as the compounds of the training set.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call