Abstract
Paper spray ionization has been used as a fast sampling/ionization method for the direct mass spectrometric analysis of biological samples at ambient conditions. Here, we demonstrated that by utilizing paper spray ionization-mass spectrometry (PSI-MS) coupled with field asymmetric waveform ion mobility spectrometry (FAIMS), predictive metabolic and lipidomic profiles of routine breast core needle biopsies could be obtained effectively. By the combination of machine learning algorithms and pathological examination reports, we developed a classification model, which has an overall accuracy of 87.5% for an instantaneous differentiation between cancerous and noncancerous breast tissues utilizing metabolic and lipidomic profiles. Our results suggested that paper spray ionization-ion mobility spectrometry-mass spectrometry (PSI-IMS-MS) is a powerful approach for rapid breast cancer diagnosis based on altered metabolic and lipidomic profiles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.