Abstract

BackgroundThe aim of this study was to apply multivariate pattern recognition to predict the severity of behavioral traits and symptoms associated with risk for bipolar spectrum disorder from patterns of whole-brain activation during reward expectancy to facilitate the identification of individual-level neural biomarkers of bipolar disorder risk. MethodsWe acquired functional neuroimaging data from two independent samples of transdiagnostically recruited adults (18–25 years of age; n = 56, mean age 21.9 ± 2.2 years, 42 women; n = 36, mean age 21.2 ± 2.2 years, 24 women) during reward expectancy task performance. Pattern recognition model performance in each sample was measured using correlation and mean squared error between actual and whole-brain activation–predicted scores on behavioral traits and symptoms. ResultsIn the first sample, the model significantly predicted severity of a specific hypo/mania-related symptom, heightened energy, measured by the energy manic subdomain of the Mood Spectrum Structured Interviews (r = .42, p = .001; mean squared error = 9.93, p = .001). The region with the highest contribution to the model was the left ventrolateral prefrontal cortex. Results were confirmed in the second sample (r = .33, p = .01; mean squared error = 8.61, p = .01), in which the severity of this symptom was predicted using a bilateral ventrolateral prefrontal cortical mask (r = .33, p = .009, mean squared error = 9.37, p = .04). ConclusionsThe severity of a specific hypo/mania-related symptom was predicted from patterns of whole-brain activation in two independent samples. Given that emerging manic symptoms predispose to bipolar disorders, these findings could provide neural biomarkers to aid early identification of individual-level bipolar disorder risk in young adults.

Highlights

  • The aim of this study was to apply multivariate pattern recognition to predict the severity of behavioral traits and symptoms associated with risk for bipolar spectrum disorder from patterns of whole-brain activation during reward expectancy to facilitate the identification of individual-level neural biomarkers of bipolar disorder risk

  • We demonstrate that the severity of a specific symptom, heightened energy associated with hypo/ mania, predisposing to future risk for Bipolar spectrum disorder (BPSD), can be predicted from patterns of neural activation during uncertain reward expectancy (RE) in a sample of transdiagnostically recruited young adults experiencing psychological distress, but who have not yet developed BPSD

  • These findings show for the first time that individual-level patterns of whole-brain activation, by predicting the severity of a symptom associated with risk for BPSD in on-BPSD young adults, are potential neural biomarkers that may be used in future studies to identify those individuals most at risk of developing these disorders

Read more

Summary

Introduction

The aim of this study was to apply multivariate pattern recognition to predict the severity of behavioral traits and symptoms associated with risk for bipolar spectrum disorder from patterns of whole-brain activation during reward expectancy to facilitate the identification of individual-level neural biomarkers of bipolar disorder risk. Pattern recognition model performance in each sample was measured using correlation and mean squared error between actual and whole-brain activation– predicted scores on behavioral traits and symptoms. RESULTS: In the first sample, the model significantly predicted severity of a specific hypo/mania-related symptom, heightened energy, measured by the energy manic subdomain of the Mood Spectrum Structured Interviews (r = .42, p = .001; mean squared error = 9.93, p = .001). CONCLUSIONS: The severity of a specific hypo/mania-related symptom was predicted from patterns of whole-brain activation in two independent samples. Given that emerging manic symptoms predispose to bipolar disorders, these findings could provide neural biomarkers to aid early identification of individual-level bipolar disorder risk in young adults

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call