Abstract
Clogging of leachate collection systems within municipal solid waste landfills can result in greater potential for contaminants to breach the landfill barrier system. The primary cause of clogging is calcium carbonate (CaCO3(s)) precipitation from leachate and its accumulation within the pore space of the drainage medium. CaCO3(s) precipitation is caused by the anaerobic fermentation of volatile fatty acids (VFAs), which adds carbonate to and raises the pH of the leachate. An important relationship in modeling clogging in leachate collections systems is a yield coefficient that relates microbial fermentation of VFAs to precipitation of calcium carbonate. This paper develops a new, mechanistically based yield coefficient, called the carbonic acid yield coefficient (Y(H)), which relates the carbonic acid (H2CO3) produced from microbial fermentation of acetate, propionate, and butyrate to calcium precipitation. The empirical values of Y(H) were computed from the changes in acetate, propionate, butyrate, and calcium concentrations in leachate as it permeated through gravel-size material. The theoretical and empirical results show that the primary driver of CaCO3(s) precipitation is acetate fermentation. Additionally, other non-calcium cations (e.g., iron and magnesium) precipitated with carbonate (CO3(2-)) when present in the leachate. A common yield between total cations bound to CO3(2-) and H2CO3 produced, called the calcium carbonate yield coefficient (Yc), can reconcile the empirical yield coefficient for synthetic and actual leachates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.