Abstract
Rates of biodiversity loss in Southeast Asia are among the highest in the world, and the Indo-Burma and South-Central China Biodiversity Hotspots rank among the world’s most threatened. Developing robust multi-species conservation models is critical for stemming biodiversity loss both here and globally. We used a large and geographically extensive remote-camera survey and multi-scale, multivariate optimization species distribution modelling to investigate the factors driving biodiversity across these two adjoining biodiversity hotspots. Four major findings emerged from the work. (i) We identified clear spatial patterns of species richness, with two main biodiverse centres in the Thai-Malay Peninsula and in the mountainous region of Southwest China. (ii) Carnivores in particular, and large ungulates to a lesser degree, were the strongest indicators of species richness. (iii) Climate had the largest effect on biodiversity, followed by protected status and human footprint. (iv) Gap analysis between the biodiversity model and the current system of protected areas revealed that the majority of areas supporting the highest predicted biodiversity are not protected. Our results highlighted several key locations that should be prioritized for expanding the protected area network to maximize conservation effectiveness. We demonstrated the importance of switching from single-species to multi-species approaches to highlight areas of high priority for biodiversity conservation. In addition, since these areas mostly occur over multiple countries, we also advocate for a paradigmatic focus on transboundary conservation planning.
Highlights
25 biodiversity hotspots were identified globally, collectively supporting 44% and 35% of the world’s vascular plants and terrestrial vertebrates, respectively, in an area equal to 1.4% of the Earth’s land surface (Myers et al 2000)
Camera traps were deployed at 1384 camera trap stations in 15 landscapes across 7 countries in Southeast Asia, yielding a combined sampling effort of 115,389 trap nights
We provide new insights into spatial patterns and drivers of species richness in Southeast Asia, highlighting that biodiversity is not evenly distributed across the region, but exhibits a complex pattern with two large primary biodiverse areas: the Thai-Malay Peninsula (TMP) and the mountainous region of Southwest China (MSC), with a scattering of smaller biodiverse areas between them
Summary
25 biodiversity hotspots were identified globally, collectively supporting 44% and 35% of the world’s vascular plants and terrestrial vertebrates, respectively, in an area equal to 1.4% of the Earth’s land surface (Myers et al 2000). Among these hotspots, two important ones are the Indo-Burma and South-Central China Biodiversity Hotspots (Fig. 1). They form a continuous area of almost 3,000,000 km, encompassing much of Southeast Asia This region is home to 10,500 endemic plants and 706 endemic vertebrates, representing 3.5% and 2.6% of global vascular plants and vertebrates, respectively (Myers et al 2000). Habitat loss is reducing the extent, quality and accessibility of suitable habitats (Fahrig 1997; Hearn et al 2018), and 24–63% of the regional terrestrial endemic species will likely become extinct by 2100 if current rates of habitat loss continue (Sodhi and Brook 2006)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.