Abstract

Computational prediction of protein-ligand interactions is a useful approach that aids the drug discovery process. Two major tasks of computational approaches are to predict the docking pose of a compound in a known binding pocket and to rank compounds in a library according to their predicted binding affinities. There are many computational tools developed in the past decades both in academia and industry. To objectively assess the performance of existing tools, the community has held a blind assessment of computational predictions, the Drug Design Data Resource Grand Challenge. This round, Grand Challenge 4 (GC4), focused on two targets, protein beta-secretase 1 (BACE-1) and cathepsin S (CatS). We participated in GC4 in both BACE-1 and CatS challenges using our molecular surface-based virtual screening method, PL-PatchSurfer2.0. A unique feature of PL-PatchSurfer2.0 is that it uses the three-dimensional Zernike descriptor, a mathematical moment-based shape descriptor, to quantify local shape complementarity between a ligand and a receptor, which properly incorporates molecular flexibility and provides stable affinity assessment for a bound ligand-receptor complex. Since PL-PatchSurfer2.0 does not explicitly build a bound pose of a ligand, we used an external docking program, such as AutoDock Vina, to provide an ensemble of poses, which were then evaluated by PL-PatchSurfer2.0. Here, we provide an overview of our method and report the performance in GC4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.