Abstract

Relative free energy calculations based on molecular dynamics simulations are combined with available experimental binding free energies to predict unknown binding affinities of acyclic Cucurbituril complexes in the blind SAMPL3 competition. The predictions yield root mean square errors between 2.6 and 3.2 kcal/mol for seven host-guest systems. Those deviations are comparable to results for solvation free energies of small organic molecules. However, the standard deviations found in our simulations range from 0.4 to 2.4 kcal/mol, which indicates the need for better sampling. Three different approaches are compared. Bennett's Acceptance Ratio Method and thermodynamic integration based on the trapezoidal rule with 12 λ-points exhibit a root mean square error of 2.6 kcal/mol, while thermodynamic integration with Simpson's rule and 11 λ-points leads to a root mean square error of 3.2 kcal/mol. In terms of absolute median errors, Bennett's Acceptance Ratio Method performs better than thermodynamic integration with the trapezoidal rule (1.7 vs. 2.9 kcal/mol). Simulations of the deprotonated forms of the guest molecules exhibit a poorer correspondence to experimental results with a root mean square error of 5.2 kcal/mol. In addition, a decrease of the buffer concentration by approximately 20 mM in the simulations raises the root mean square error to 3.8 kcal/mol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call